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ABSTRACT

Multiple Region FDTD (MR/FDTD), an extension of

classical FDTD to multiple sub-regions within a problem

domain, is introduced. In MR/FDTD the problem

domain is broken into several independent FDTD sub-

region lattices. The sub-region lattices are terminated

using a single surface integral radiation boundary
condition applied simultaneously to all sub-regions

providing mutual interaction between the sub-regions.

The advantages of MR/FDTD for sparse modeling

problems include computational and memory

efficiencies that result from confining the FDTD lattices

to the space near objects and the ability to use different

lattices and/or lattice orientations within each sub-

region. MR/FDTD also eliminates the need for local

absorbing boundary conditions.

INTRODUCTION

Finite Difference Time Domain (FDTD), first

introduced by Yee [1] and later extended and improved

by others [2-5], is a powerful, robust, and popular

modeling algorithm based on the direct numerical

solution of Maxwell’s Equations in the differential, time

domain form. While very effective, FDTD can suffer

from computational and memory usage inefficiencies

when the spacing between objects in the computational

domain becomes large yielding a sparse modeling

problem. In addition, modeling inefficiencies and/or

errors can result when object boundaries are not well

matched to the FDTD lattice.

These inefficiencies and errors in classical FDTD

result from the use of a uniform, space filling, typically

orthonormal, lattice applied throughout a generally
convex shaped problem domain. In a typical FDTD

modeling problem a great deal of calculation time and
computer memory is devoted to determining the fields at

free space lattice points between objects to provide field

continuity. The actual fields at most of these points are,

in general, of little or no interest to the problem at hand.

The inefficiencies of FDTD are often exacerbated by the

boundary conditions used to terminate the lattice. These

boundary conditions, such as the Mur absorbing

boundary conditions (ABC) [4], normally require a

buffer layer between the boundary and problem space

region to achieve acceptable accuracy levels. The buffer

layer adds a disproportionately large number of lattice

points since it lies around the outer edges of the probIem

domain. Varying the lattice to better fit elements within

the model domain is also a problem due to concerns

about artificial reflection and dispersion errors

introduced by variations in the lattice,

The Multiple Region FDTD (MR/FDTD) approach

introduced in this paper seeks to avoid the inefficiencies

of classical FDTD when applied to large, sparsely filled, m
modeling problems by eliminating explicit calculation of

fields in the space in-between sub-regions surrounding

the modeled objects. In MR/FDTD the problem space is

divided into several, independent sub-regions distributed

in otherwise free space. The fields in the sub-regions are

determined using localized FDTD lattices and the

interaction between the sub-regions is accounted for by

performing a surface integration of equivalent sources on

the sub-region surfaces. These equivalent sources are

determined using the Shelkunoff equivalence and their

integration yields an exact terminating boundary

condition, thereby eliminating the need for artificial

absorbing boundary conditions.

THE TIME DOMAIN SURFACE

EQUIVALENCE PRINCIPLE

The Schelkunoff surface equivalence theorem states

that the real electromagnetic sources and/or scatterers
inside an imaginary volume can be replaced by
equivalent magnetic and electric current sources on the
surface enclosing the volume resulting in the same fields

outside the volume and a zero field inside the volume.
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The presence of a zero field inside this exclusion

volume, in turn, allows its contents (sources and

scatterers) to be replaced by free space. With the entire

problem domain now filled by free space, the fields

anywhere outside the imaginary volume can be found by

integrating the equivalent sources over the surface using

the free space Green’s function.

Equation (1) gives the electric field everywhere in

the free space region outside the exclusion volume in

terms of equivalent surface currents on the bounding

surface. The surface current densities M, and J, are

related to the tangential components of the fields on the

surface by ll,(r~t) = – ii x E(r’,t) and ~,(r~t) = ii x

H(rlt).

where:

An equation for H(r,t) can be found from equation

(1) by using duality. The unit vector ii is normal to the

surface at r‘ and pointing out of the exclusion volume.

The equivalence principle is readily extended to

multiple, simply connected, exclusion volumes, VI ,V2,

. . . V.. As with one volume, the determination of the

fields outside the volumes, V1,VZ, . . . V,, amounts to the

integration of the tangential components of the fields and

their time derivatives over all of the enclosing surfaces,

Sl,S2,... .Sn.

Alternate equations to (1) for the fields outside the

exclusion volumes that may be useful in implementing

MR/FDTD can be formulated in several different but

essentially equivalent ways. One such alternate
formulation for E(r,t) applicable to traditional Cartesian
coordinate system based FDTD is the Kirchhoff Integral
formula (2).

E(r, t) =* – -—]-+*)N (2)
J’(( )[

-.~ .E(r’,z) + 1 W?(r’, @

R2 CR &
,“

The use and implementation of the Kirchhoff Integral
formula (2) as an integrated radiation boundary

condition (IRBC) is presented in [6]. This formulation

requires only knowledge of the E(r’,t) however a

derivative in space as well as in time is required and past

values of the both the field and its space derivative must

be saved to enable evaluation of the retard time field that

are a function of ~. When used in a single region IRBC

case described in [6], high levels of accuracy and

reasonable computational and memory efficiencies are

achieved. Yet another formulation [7] that replaces the

time derivative with a time integration has been

proposed and provides similar accuracy improvements

over the Mur ABC. Elimination of the time derivative

comes at the expense of requiring a second order

derivative in the space domain.

MULTIPLE REGION FINITE
DIFFERENCE TIME DOMAIN

A typical FDTD modeling problem that includes a

number of scatterers with a source is the illustrated in

Figure 1. To use classical FDTD to model this problem,

an FDTD lattice must be established with fine enough

spacing to resolve not only the locations of the modeled

elements but also to resolve important features of the

source and scatterers including slanted edges, notches

and/or holes. In addition, classical FDTD requires that a

single, uniform grid be established that completely fills

the region. Finally a buffer layer must be added to the

outside edge of the model space prior to the application

of an absorbing boundary condition to terminate the

lattice, Consequently, a great deal of computational time

and memory is devoted to a large number of free space

grid points.

Figure 1. A space jilling, often an excessively fine grid is

necessary in classical FDTD to adequately represent

modeled objects.

1476



Now consider the same problem analyzed using

MR/FDTD as illustrated in Figure 2. In the MR/FDTD

method, the FDTD problem domain is broken into a

number of interior problems consisting of solving for

fields in independent sub-regions using FDTD and an

exterior problem in which the fields are found outside

the sub-regions by performing a surface integration of

equivalent currents. Classical FDTD is applied to each

of the sub-regions with the boundary layer calculation

utilizing either equation (1), equation (2) or one of the

several other alternate forms.

In MR/FDTD lattice spacing and even coordinate

systems within sub-regions may be chosen to best suit

the modeling requirements of that region. Time stepping

fields are calculated only within the sub-regions of
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Figure 2. The fields on all sub-region bounding

sw-j$aces,S1, S2, and S3, are integrated at each time step

to determine the new electric fields on the boundary

layer lattice points for the next time step.

interest and not in the spaces between the sub-regions.

Use of equation (1) terminates the FDTD lattice of the

sub-regions enclosed in surfaces, S1, S2, . . . , S.,

providing an exact radiating boundary condition

eliminating the need for buffer layers. Lattices are

established only in close proximity to the actual objects

being modeled in each of these sub-regions. These

factors greatly reduce the total FDTD lattice area in

large sparse problem domains and allow more flexibility

in lattice application.

The example depicted in Figure 2 has 3 sub-regions

(shaded areas) surrounded by the surfaces S1, S2, and Ss.

The independent sub-regions in Figure 2 have different
lattices adapted to the objects they contain. The lattice

spacing in sub-region 3 is smaller than sub-regions 1 and

2 to accommodate the notches in the modeled scattering

object. The grid of sub-region 2 is rotated to better align

with the object that it contains. If need be, lattices based

on different orthogonal, curvilinear coordinate systems

may be applied as required in given sub-regions. No

lattice is established in the free space region between

sub-regions.

Once the grids are established, the MWFDTD

algorithm proceeds in a manner that is very similar to the

classical FDTD. At each time step, the fields at all grid

points are updated using past field values. If the point in

question lies entirely inside a sub-region or on a sub-

region surface, the classical FDTD update equations are

used. If the point is a boundary layer or lattice

termination point either equation (1) or its dual is used to
calculate the updated field values. Near field values at

points other than the boundary points can also be found

using equations (1) and/or its dual and far field radiation

patterns can be obtained in a similar manner using the

field values available for the equivalent surfaces.

Both the E(r’,t) and the H(r’,t) on the equivalent

surfaces are required to find the new fields using

equation (1). If the surfaces are chosen to pass through a

plane containing the tangential E(r’,t) field components

for example, the tangential H(r’,t) fields can be found by

interpolating between values on the two adjacent H field

planes. A linear interpolation provides second order

accuracy (error is 0(A2)) that is consistent with the

second order accuracy of the center difference

derivatives normally used in FDTD.

Since the fields required by (1) are time delayed,

previous values of the fields on the surfaces from past

time samples must be retained. The number of past time

samples is determined by the largest R (Gm = t– R~~/c)

in a given problem. In addition, since FDTD utilizes a

time stepping approximation to linear time (t=nAt), both

the field values and their time derivatives must be

interpolated from available values. While a linear

interpolation is adequate for the time values themselves,

a second order or three point interpolation must be used

to maintain second order accuracy in the time

derivatives.
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Figure 3: Example problem for comparing MIUFDTD

and classical FDTD consisting of two sub-regions, A and

B, located in an overall region.

A simple comparison of the memory required by

classical FDTD and MR/FDTD reveals that significant

savings can be achieved in some classes of problems by

using MR/FDTD. Consider a typical problem depicted

in Figure 3 where the sources and scatterers are confined

to two sub-regions, A and B. Figure 4 is a plot memory

efficiency of MR/FDTD relative to classical FDTD

where the space between the sub-regions is varied. In

the illustrated case, memory efficiency is defined as the

ratio of memory required by MRFDTD to that required

by FDTD. As can be seen in Figure 4, MR/FDTD can

reduce the memory required by a factor of 2 to 5 for

many problems.

@,Ia)=
M?lDIZl_L$t@, la)

lb= Jb=@=Ja=ti=Ia I= J=K=s. Ia
lZJL9.1$t&, Ia)

t .4

0.2

0
2 4 6 8 10 12

s

Figure 4: Example problem for comparing MR/FDTD and

classical FDTD showing that for some dimensions

MR/FDTD can save significant memory.

CONCLUSION

This paper has introduced the concept of Multiple

Region FDTD and discussed some of the details of its

development and implementation. MWFDTD has

significant advantages over classical FDTD for some

classes of problems since lattices, possibly with different

orientations and are applied independently to the sub-

regions and since fields away from the regions of interest

are not calculated. Comparisons between MR/FDTD and

classical FDTD have been presented for a typical

problem in terms of memory usage.
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