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ABSTRACT

Multiple Region FDTD (MR/FDTD), an extension of
classical FDTD to multiple sub-regions within a problem
domain, is introduced. In MR/FDTD the problem
domain is broken into several independent FDTD sub-
region lattices. The sub-region lattices are terminated
using a single surface integral radiation boundary
condition applied simultaneously to all sub-regions
providing mutual interaction between the sub-regions.
The advantages of MR/FDTD for sparse modeling
problems include computational and memory
efficiencies that result from confining the FDTD lattices
to the space near objects and the ability to use different
lattices and/or lattice orientations within each sub-
region. MR/FDTD also eliminates the need for local
absorbing boundary conditions.

INTRODUCTION

Finite Difference Time Domain (FDTD), first
introduced by Yee [1] and later extended and improved
by others [2-5], is a powerful, robust, and popular
modeling algorithm based on the direct numerical
solution of Maxwell’s Equations in the differential, time
domain form, While very effective, FDTD can suffer
from computational and memory usage inefficiencies
when the spacing between objects in the computational
domain becomes large yielding a sparse modeling
problem. In addition, modeling inefficiencies and/or
errors can result when object boundaries are not well
matched to the FDTD lattice.

These inefficiencies and errors in classical FDTD
result from the use of a uniform, space filling, typically
orthonormal, lattice applied throughout a generally
convex shaped problem domain. In a typical FDTD
modeling problem a great deal of calculation time and
computer memory is devoted to determining the fields at
free space lattice points between objects to provide field
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continuity. The actual fields at most of these points are,
in general, of little or no interest to the problem at hand.
The inefficiencies of FDTD are often exacerbated by the
boundary conditions used to terminate the lattice. These
boundary conditions, such as the Mur absorbing
boundary conditions (ABC) [4], normally require a
buffer layer between the boundary and problem space
region to achieve acceptable accuracy levels. The buffer
layer adds a disproportionately large number of lattice
points since it lies around the outer edges of the problem
domain. Varying the lattice to better fit elements within
the model domain is also a problem due to concerns
about artificial reflection and dispersion errors
introduced by variations in the lattice.

The Multiple Region FDTD (MR/FDTD) approach
introduced in this paper seeks to avoid the inefficiencies
of classical FDTD when applied to large, sparsely filled,
modeling problems by eliminating explicit calculation of
fields in the space in-between sub-regions surrounding
the modeled objects. In MR/FDTD the problem space is
divided into several, independent sub-regions distributed
in otherwise free space. The fields in the sub-regions are
determined using localized FDTD lattices and the
interaction between the sub-regions is accounted for by
performing a surface integration of equivalent sources on
the sub-region surfaces. These equivalent sources are
determined using the Shelkunoff equivalence and their
integration yields an exact terminating boundary
condition, thereby eliminating the need for artificial
absorbing boundary conditions.

THE TIME DOMAIN SURFACE
EQUIVALENCE PRINCIPLE

The Schelkunoff surface equivalence theorem states
that the real electromagnetic sources and/or scatterers
inside an imaginary volume can be replaced by
equivalent magnetic and electric current sources on the
surface enclosing the volume resulting in the same fields
outside the volume and a zero field inside the volume.
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The presence of a zero field inside this exclusion
volume, in turn, allows its contents (sources and
scatterers) to be replaced by free space. With the entire
problem domain now filled by free space, the fields
anywhere outside the imaginary volume can be found by
integrating the equivalent sources over the surface using
the free space Green’s function.

Equation (1) gives the electric field everywhere in
the free space region outside the exclusion volume in
terms of equivalent surface currents on the bounding
surface. The surface current densities M, and J, are
related to the tangential components of the fields on the
surface by My(r’t) = —n X E(r’t) and Ji(r’t) = A X
H(r’t).
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where:

An equation for H(r,t) can be found from equation
(1) by using duality. The unit vector n is normal to the
surface at r’and pointing out of the exclusion volume.

The equivalence principle is readily extended to
multiple, simply connected, exclusion volumes, V,V,,
... Vo As with one volume, the determination of the
fields outside the volumes, V1,V,, ... V,, amounts to the
integration of the tangential components of the fields and
their time derivatives over all of the enclosing surfaces,
SiSs, ..., S

Alternate equations to (1) for the fields outside the
exclusion volumes that may be useful in implementing
MR/EDTD can be formulated in several different but
essentially equivalent ways. One such alternate
formulation for E(r,t) applicable to traditional Cartesian
coordinate system based FDTD is the Kirchhoff Integral
formula (2).

(e B 1 ] 1),
E(r’t)_““.'. {(" R)[ R &R o ]R on }‘k @)

The use and implementation of the Kirchhoff Integral
formula (2) as an integrated radiation boundary
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condition (IRBC) is presented in [6]. This formulation
requires only knowledge of the E(r’,t) however a
derivative in space as well as in time is required and past
values of the both the field and its space derivative must
be saved to enable evaluation of the retard time field that
are a function of 7. When used in a single region IRBC
case described in [6], high levels of accuracy and
reasonable computational and memory efficiencies are
achieved. Yet another formulation [7] that replaces the
time derivative with a time integration has been
proposed and provides similar accuracy improvements
over the Mur ABC. Elimination of the time derivative
comes at the expense of requiring a second order
derivative in the space domain.

MULTIPLE REGION FINITE
DIFFERENCE TIME DOMAIN

A typical FDTD modeling problem that includes a
number of scatterers with a source is the illustrated in
Figure 1. To use classical FDTD to model this problem,
an FDTD lattice must be established with fine enough
spacing to resolve not only the locations of the modeled
elements but also to resolve important features of the
source and scatterers including slanted edges, notches
and/or holes. In addition, classical FDTD requires that a
single, uniform grid be established that completely fills
the region. Finally a buffer layer must be added to the
outside edge of the model space prior to the application
of an absorbing boundary condition to terminate the
lattice. Consequently, a great deal of computational time
and memory is devoted to a large number of free space
grid points.

+4
+4
+4
++
++
+4
++
++
++
++
+ 4
++
++

[
bbb
By
T

+
¥
4
¥
+
+
+
v
e
¥
¥
¥
¥
+

FHttb bbbt et

Figure 1. A space filling, often an excessively fine grid is
necessary in classical FDTD to adequately represent
modeled objects.



Now consider the same problem analyzed using
MR/EDTD as illustrated in Figure 2. In the MR/FDTD
method, the FDTD problem domain is broken into a
number of interior problems consisting of solving for
fields in independent sub-regions using FDTD and an
exterior problem in which the fields are found outside
the sub-regions by performing a surface integration of
equivalent currents. Classical FDTD is applied to each
of the sub-regions with the boundary layer calculation
utilizing either equation (1), equation (2) or one of the
several other alternate forms.

In MR/FDTD lattice spacing and even coordinate
systems within sub-regions may be chosen to best suit
the modeling requirements of that region. Time stepping
fields are calculated only within the sub-regions of
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Figure 2. The fields on all sub-region bounding
surfaces, S1, 82, and 83, are integrated at each time step
to determine the new electric fields on the boundary
layer lattice points for the next time step.

interest and not in the spaces between the sub-regions.
Use of equation (1) terminates the FDTD lattice of the
sub-regions enclosed in surfaces, Sy, S; ... , S,
providing an exact radiating boundary condition
eliminating the need for buffer layers. Lattices are
established only in close proximity to the actual objects
being modeled in each of these sub-regions. These
factors greatly reduce the total FDTD lattice area in
large sparse problem domains and allow more flexibility
in lattice application.
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The example depicted in Figure 2 has 3 sub-regions
(shaded areas) surrounded by the surfaces Sy, S,, and S;.
The independent sub-regions in Figure 2 have different
lattices adapted to the objects they contain. The lattice
spacing in sub-region 3 is smaller than sub-regions 1 and
2 to accommodate the notches in the modeled scattering
object. The grid of sub-region 2 is rotated to better align
with the object that it contains. If need be, lattices based
on different orthogonal, curvilinear coordinate systems
may be applied as required in given sub-regions. No
lattice is established in the free space region between
sub-regions.

Once the grids are established, the MR/FDTD
algorithm proceeds in a manner that is very similar to the
classical FDTD. At each time step, the fields at all grid
points are updated using past field values. If the point in
question lies entirely inside a sub-region or on a sub-
region surface, the classical FDTD update equations are
used. If the point is a boundary layer or lattice
termination point either equation (1) or its dual is used to
calculate the updated field values. Near field values at
points other than the boundary points can also be found
using equations (1) and/or its dual and far field radiation
patterns can be obtained in a similar manner using the
field values available for the equivalent surfaces.

Both the E(r’,t) and the H(r’,t) on the equivalent
surfaces are required to find the new fields using
equation (1). If the surfaces are chosen to pass through a
plane containing the tangential E(r’,t) field components
for example, the tangential H(r’,t) fields can be found by
interpolating between values on the two adjacent H field
planes. A linear interpolation provides second order
accuracy (error is O(A?) that is consistent with the
second order accuracy of the center difference
derivatives normally used in FDTD.

Since the fields required by (1) are time delayed,
previous values of the fields on the surfaces from past
time samples must be retained. The number of past time
samples is determined by the largest R (Tpax = t — Rinax/C)
in a given problem. In addition, since FDTD utilizes a
time stepping approximation to linear time (t=nAt), both
the field values and their time derivatives must be
interpolated from available values. While a linear
interpolation is adequate for the time values themselves,
a second order or three point interpolation must be used
to maintain second order accuracy in the time
derivatives.
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Figure 3: Example problem for comparing MR/FDTD
and classical FDTD consisting of two sub-regions, A and
B, located in an overall region.

A simple comparison of the memory required by
classical FDTD and MR/FDTD reveals that significant
savings can be achieved in some classes of problems by
using MR/FDTD. Consider a typical problem depicted
in Figure 3 where the sources and scatterers are confined
to two sub-regions, A and B. Figure 4 is a plot memory
efficiency of MR/FDTD relative to classical FDTD
where the space between the sub-regions is varied. In
the illustrated case, memory efficiency is defined as the
ratio of memory required by MRFDTD to that required
by FDTD. As can be seen in Figure 4, MR/FDTD can
reduce the memory required by a factor of 2 to 5 for
many problems.
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Figure 4: Example problem for comparing MR/FDTD and
classical FDTD showing that for some dimensions
MR/FDTD can save significant memory.

1478

CONCLUSION

This paper has introduced the concept of Multiple
Region FDTD and discussed some of the details of its
development and implementation. =~ MR/FDTD has
significant advantages over classical FDTD for some
classes of problems since lattices, possibly with different
orientations and are applied independently to the sub-
regions and since fields away from the regions of interest
are not calculated. Comparisons between MR/FDTD and
classical FDTD have been presented for a typical
problem in terms of memory usage.
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